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ABSTRACT

Many numerical studies of flows that involve complex geometries are limited by the

difficulties in generating suitable grids. We present a Cartesian boundary scheme for

two-dimensional, compressible flows which is unfettered by the need to generate a

computational grid and so it may be used, routinely, even for the most awkward of

geometries. In essence, an arbitrary-shaped body is allowed to blank out some region

of a background Cartesian mesh and the resultant cut-cells are singled out for speciprl

treatment. This is done within a finite-volume framework and so, in principle, any

explicit flux-based integration scheme can take advantage of this method for enforcing

solid boundary conditions. For best effect, the present Cartesian boundary scheme

has been combined with a sophisticated, local mesh refinement scheme, and a number

of examples are shown in order to demonstrate the efficacy of the combined algorithm

for simulations of shock interaction phenomena. Accu~ion Fc)r
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1 INTRODUCTION

Of the three basic strategies that have been employed to compute flows with complex

geometries, the Cartesian boundary approach has received the least attention; in con-

trast, both the unstructured mesh approach (e.g. [!] and the composite body-fitted

grid anproach (e.g. [2]) have large followings. This lack of attention is surprising given
its conceptual simplicity. Admittedly, a number of obstacles have to be overcome so

as to produce a working scheme, but this is also true of the other two approaches.

For example, it is very difficult to automate the process of generating composite grids

for genuinely complex geometries, and the resultant inter-grid boundaries complicate

the method of flow solution[3]. Similarly, there is evidence to suggest that the un-

structured grid approach is slightly at odds with the requirements of the flcw solver.

For example, for strong shock waves, unstructured grid schemes .uffer larger phase

errors than do structured grid schemes[4].

In this paper, we present a general purpose Cartesian boundary method for com-

puting shock interactions that involve complex geometries. It will become clear that

this method relies more on sophisticated logic than on sophisticated mathematics.

Indeed, the biggest drawback of the Cartesian boundary approach, and one which

will always act to limit its foUlowing, is the fact that there is no concise recipe. The

method relies on being able to handle exceptions and is therefore much more verbose

than say an unstructured grid method. In part, this explains why most Cartesian

schemes only work for stylized geometries where the necessary logic is greatly reduced

and the development costs are low. The strength of the present method lies in its

ability to cope with truly arbitrary geometries.

Space does not peirmit us to provide an adequate survey of existing Cartesian

boundary schemes, and so the following references, whilst not completely exhaustive,

should suffice to indicate research activity in this area[5]-[19]. Where appropriate,

direct references will be made to some of these works in the main text. Moreover,

since a detailed description of our scheme has already appeared in the literature[171,

here we only elaborate on those aspects of the scheme which appear to have caused

some confusion. Therefore we recommend that this paper be read in conjunction with

the original article so that it does not appear disjointed.

The rest of this paper is as follow3. In the next section, we outline certain com-

ponents of our Cartesian boundary scheme, and we endeavour to reveal the obstacles

that shaped them. For practical purposes, any Cartesian boundary scheme must

be combined with some form of local mesh refinement. Otherwise, the background
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mesh would in general require an inordinate number ot cells just to unambiguously

determine the input geometry. In Section 3, we present our preferred form of mesh

refinement - the Adaptive Mesh Refinement (AMr) algoiithmn[20]. Following which,

in Section 4, examples are given to demonstrate the efficacy of the present com-

bined Cartesian boundary-mesh refinement scheirie for investigating shock interaction

phenomena. Finally, 'i Section 5 some conclusions are drawn concerning Cartesian

boundary schemes.

2 CARTESIAN BOUNDARY SCHEME

We first reconsider the seemirmgly innocuous problem of determining which cells of the

background mesh are blankel out by the iiput geometry. Then we re-examine the

method by which we overcrme the stability problems due to the presence of arbitrarily

small cut-cells. Finally, we outline how our method can be extended to coi)e with

moving bodies

2.1 Geometric Considerations

The first step in any Cartesian boundary scheme is to determine which mesh cells lie

inside, outside or on the solid boundaries specified as input. The sophistication of this

step will largely determine the performance of the overall algorithm. The simplest

strategy is to approximate the bou-idaries ib a series of steps, thus there are only

two types of cells: solid cells which li wholy inside a body, and uncut cells which

lie wholly outside a body. Unfortunately, this simple strategy does not work well in

general, because the corrugations along the approximation to a curved boundary will

inevitably cause acoustic disturbances which pollute the flow solution. However, Falle

& Giddings[10] have shown that the introduction of some viscosity can restrict such

disturbances to a narrow boundary layer, and so this method should not be rejected

out of hand. We elected to allow cut-cells, thtis solid boundaries are approximated

by a series of straight line segments. This approach requires us to find the actual

intersection points between the background grid and the input geonietry, by tracing

its outline. Superficially this task seems straightforward. But, if due care is not

taken, round-off errors will cause problems such as an intersection point being missed

or duplicated.

Although such problems are rare, a robust scheme must prevent them from ever

happening or at least ensure that nothing untoward occurs as a result. We elected to



dispense with round-off error altogether and developed a procedure that would find

the intersection points relative to a discrete latt;ce using only exact operations[17].

Thus complete control is exercised over the process of determining the intersection

points and so no point can ever be missed oi duplicated. 0 the other hand, Rice[21J

attempted to overcome round-off problems by basically employing tolerances when

making floating point comparisons. This solution results in too many restrictions on

the input geometry (see [21]) and, in our opinion, is inelegant. It may even be slightly

dangerous in that it is not machine independent. For example, consider what might

happen if the intersection points are found using a heterogeneous parallel computing

system. If an intersection lies in the vicinity of a processor partition bounda-y, it is

conceivable that only one of ý,he affected nodes will find the intersection and so there

will be an inconsistency. Admittedly, corrective action could be taken by some fix-

up procedure, but this would introduce the unnecessary overhead of inter-processor

communication. In general it is far better to circumvent problems than to attempt

to cure them when they occur.

Once all the intersection poiots are found, they must be collated so as to determine

the nature of tkh,. cut cells. For simplicity, we elected to handle only the three basic

types of cell formed from the intersection of a single straight line segment, which

together with the four possible crientations gives the twelve types of cut-cell shown

in Figure 1. Note that we do not allow cornets to occur within a c0H.

A a C D F

S b d 0 f

Figure 1: .Basic types of cut-cell.

Since there is no limit to the number of intersections that might occur for a given

cell, its type is generally determined fr'm its first and last ;, ersection points as shown

in Figure 2. Under normal circumstances, a cell haviug more than two intersection

points merely indicates that the mesh is too coarse to resolve the input geometry

properly, in which case, we locally refine the mesh so as to get a better representation

of the boundary.

In certain circumstances, say near cusps, some cells are found ,o be degenerate

and a blunting procedure is applied in o'der to remove the degenerate cells from the

boundary representation, see Figure 3.1. Here the degree of blunting is excessive and
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Type-A Type-C

Figure 2: Collation of intersection points.

could be reduced by introducing further cell-types but this would further complicate

what is already a fairly busy scheme. Instead, as shown in Figure 3.2, we employ

local mesh refinement to reduce the blunting to an acceptable level.

(1) (2)

j ... .. .

Figure 3: Local mesh refinement is used to control the blunting of sharp cortners.

This blunting procedure has come in for some criticism sinco it is perceived to alter

the input geometry[22]. But, if it s used in conjunction with local uiesh refinement.

any alterations are on a scale so small as to be masked 1) the inherent dissipation of

a shock-capturing s-!heme. In effect, numerical diffusion results in a small separation

bubble '3 round off any singularity in the input geometry. Thus our blunting pro-

cedure, if used sensibly, has minimal affect on the flow solution, and results given in

Section 4 substantiat - this claim. Besides, at a more philosophical level, one could

argue that if such alterations did matter, no simulation could ever hope to reproduce

an experiment since no very shar;, corner is precise in its manufacture. But this

runs against common ,=xperience and so imptcrccpfiblc alterations (EA) not matter: any

discretization is but an approxii-.ation to the input geometry.

As will be shown in Figure 11, our two-dimensional Cartes>'M boundary scheme

is able to handle arbitrary geometries. autouiatically. Yet we have nut attempted to

extend the method to tiir-e-dimensions, simply because the task of determining the
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cut-cell types will dominate proceedings, aud our interests are of a more fluid dynam-

ical nature. The simplest strategy would be to produce some surface triangulation of

the object of interest and compute the intersectiors with the Cartesian mesh triangle

by triangle. But unless the triangles are much smaller than the smallest mesh cell

used for the computation, this strategy wil, prove unsatisfactory because one will

just resolve the triangular facets and not the htue surface geometry. Moreover, with a

local refinement scheme it may not be possible to predict ahead of time how small the

smallest cell will be. Melton et aL.[14] have adopted the only sensible approach and

are ising a commercial CAD package to provide the correct surface representation.

However, such packages are usually proprietary and are therefore difficult to obtain

for research purnoses.

Whereas Melton et al. are using a surface representation and are laboriously

developing the machinery to compute the grid intersection points themselves, we

would advocate using a solid modeller based on a Polygonal-Map octree[23]. Such

modellers could provide the cut-cell information directly. In effect, they represent an

object by a number of cqlbeidal elements, maintaining the precise surface geometry

of each element. If the elements were made small enough, say to match the size

of mesh cell needed for a fluids computation, the nature of most cut-cells would

follow immediately. Although, a blunting proceuure might have to be applied so as

to remove certain degenerate elements as i- done in two-dimensions. Given such a

package the extension of cur Cartesian boundary scheme to three-dimensions would

be straightforward.

2.2 Stability Considerations

Since cut-cells can be arbitrarily small, a Cartesian boundary scheme must address

the stability problems caused by having disparate cell sizes. For steady-state compu-

tations, De Zeeuw & Powell[19] have demonstrated that straightforward local time-

stepping is sufficient to ensure stability. On the other hand, unsteady flow compl-

tatioins require a more sophisticated strategy. For example, Berger & Le Veque[6]

utilized a large time-step generalization of Godutiov's method which keeps tiack of

individual waves as they move across the mesh. This scheme does not suffer an ex-

plicit restriction on the size of stable time step and so very small cut cells can be safely

integrated at the time step used to integrate uncut cells. As an alternative, Pember ft

al.[15] redistribute part of the computed updates for small cut cells to neighbouring

cells, following certain rules which ensure stability. As yet another alternativc., we
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(2)

Figure 4: A merging strategy is used to remove small cells.

employ a cell merging technique which is a generalizatiou of the method employed

by both Clarke et al[8] and by Chiang et al. [7]. Ultimately, whatever method is

chesen, it must work in the most general of cas,.s, otherwise it negates the principal

motivation for developing a Cartesian boundary scheme: the promise of being able

to handle arbitrary geometries in a completely automatic fashion.

To see. how our approach works in the simplest case, consider 'Figure 4.1. Suppose

an update is computed for each cell using a one step finite-volume scheme. The

updates to the conserved variables, AW. and AW6 , may be writteni

= At F.A andAWb -- At ._. A

afaces a t/ a,7es 6

where V• and Vb are the volumes of the cells. amd F is the flux acting through the

face A. If the time step At is based on the size of the uLicut cell 6, the solution within

a will he unstable. To ensure stability, the updates for the two cells are replaced by

some fraction of their volume-weighted average. Sine the v'olume weighted average

is equivalent to the update that would Lave been computed for the composite cell

shown in Figure 4.2,

VoAW. + •,AW, At jFVA,
V. + V11 VCfaces

V V
the appropriate fractions are vKs for cell a and v for cell b. Thus, effectively

we would have a grid that contains the cell c instead of the two cells n and b. Although

this merging process inevitably reduces the accuracy of the integration scheme at solid

boundaries, Coirier & Powell[9] have shoe n that it does not affect the globa! accuracy.

Also, f needs be. the local 'oss in accuracy can be recovered using meth refinement.

The generalization of this method rests on finding a set of lists, where each list

identifies a group of ceils that nced to be merged together so that certain small cut-
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cells do not cause instabilities, see [17] for the details. Note that a list can contain

several cells, but no one cell appears in more than one list. The cut-off point for

determining whether a cell is small or not is completely arbitraty. In pracice, we

have found that cells larger than half the size of an uncut cell do not cause problems

and so are not deemed to be small. Note that our procedure is just a convenient

method for computing updates for awkward shaped cells from a small nurnber of

fixed cell-types for which the update is well defined and easily coded.

F6i example, a type-A cell h ts just three sides. The flow solution in such a cell can

be reconstructed using the method proposed by De gecuw & Powell[19]. Following

which, it is a straightforward matter to compute the three fluxes acting on these

faces, using one's favourite upwind scheme. Note, as is common practice, the flux for

the boundary face is computed by reflecting the normal momentum at the wall. The

cell-update then fo!lows trivially to be used later on by the cell merg3ig procedure.

Given that no one cell appears in more than one combination list, our int'tgration

procedure is conservative.

2.3 Extension to Moving Bodies

The next logical step in the development, of our Cartesian boundary scheme is its

extension to moving bodies. Like most components of the scb-!me this extension is

simple in concept, but awkward to implement in a toolproof manner, and out own

efforts have been stymied by other research commitments. Nevertheless, we outline

the strategy that we have devised[24] and note that it is basically the same as that

devised by Bayyuk et al.[5j. Whilst the strategy is clear, certain imp!ementation

details need to be ironed out.

Consider a body which is moving relative to a background Cartesian mesh, say

in a north westerly direct.ion. Figure 5 shows some of the changes that a cell might

undergo during a time step from t" to tV+ 1 . If the cell har, the same type at the end

of the time step as it did at the start, the cell may be integrated trivially using the

following finite-volume discretization

_V+.,W'+- = V"WV1 - ŽA ) F".A -(,6,O,p)t(V'+'- V(,).

Here V' arid V•'- are the volumes of the cell at the start and end of the time step

_-t. W is the conserved variable vector per unit volume, and F" is the flux through

a face whose average area is A over the course of the time step. Similarly, p is the

average pressure which acts on the solid boundary and so the last term is effectively
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the work done by the boundary displacing a volume of fluid (V"+' - V"). Difficulties

only arise if the cell changes type during the time step as is the case for three of the

examples in Figure 5.1.

(1)

B "B B "f A - Solid Uncut"B

(2)

Figure 5: If a body moves, individual cells may change type.

The solution trick ;s to find groups of cells such that the type for the group

remains constant over the time step as shown in Figure 5.2. Then the above finite-

volume discretization may be applied straightforwardly to the composite cell. To see

how this may be iniplementated in the general case consider Figure 6. Figure 6.1

shows the outline of some body at the start and end of a time step. Figure 6.2 shows

two curves C1 and C2 which are the external hulls of those cells which are cut at either

tn or t'n+. If the body is non-deformable, these curves cannot cross. The problem of

finding suitable combination groups is reduced to connecting up C, and C2 along the

co-ordinate lines as shown in Figure 6.3. In this case, Figure 6.4 shows the resultant

groups. Some of these combination groups may then have to be merged with other

cells, as in the previous section, to ensure stability.

Although the above procedure is straightforward, it has proven difficult to code

in a manner that matches the generality of the rest of the algorithm. Moreover, it

has certain inherent limitations that sonme may find objectionable. For example, the

procedure to find the combination groups is not unique. Ccnsider the case where a

planar piston is moving at 450 to the mesh, see Figure 7. If care is not taken, the

combination groups could alternate between running vertically and running horizon-

tally. This would result in in!'ormation propagating along the face of the rDiston at

non-physical speeds. Bayyuk et al.[5] identify some other weaknesses.

Although the extension to moving bodics clearly has some weaknesses, tile early

results are encouraging and we feel 1-bis approach is worth persuing, especially given

the the exciting new applications that it would open up.
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(1) (2)

(3) (4)

B A

Figure 6: Strategy for finding groups of cells whose type remains constant when a

body moves.

Figure 7. Problems could arise, if combination cells alterrate in orientation.

3 THE A.MR ALGORITHM

The Adaptive Mesh Refinement (AMR) algorithm is a general purpose scheme for

integrating systems of hyperbolic partial differential equations. Jt attempts to reduce

the costs of integration by matching the local resolution of the computational grid to

the local requirements of the solution being sought. The foundations of the algorithm

lie with the work of Berger & Colella[251, but the derivative outlined here is due to

Quirk[20].

The AMR algorithm employs a hierarchical grid system. In the following, the

term 'mesh' refers to a single topologically rectangular patch of cells and the term
'grid' refers to a collection of such patches. At the bottuni of the hierarchy a set of

coarse mesh patches delineates the computational domain. These patches form the
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grid G0 aria ,hey a - restricted such that there is continuity of grid lines between

iieighbourin& p'.tche:j. This domain may be reffied locally by embedding fiier mesh

patches into the (,o:.rqe grid G0 . These embedded patclhes form the necxt grid in the

hiera:chy, G1. Fach embzdded patch is effecive•ly formed by sublividiag -',e coarse

cells of the patches that it overi" ps. T71e choi-e for the refir'emertt ratio is arbitr;-,y,

but it must be the same for all the emni -dded pawhes. T'hu.;,.by construct n, the

grid G, also has contim'ity of grid lines. This process of adding grid tiers to effect
local refinement may be repeated as often as desired, see Figiu-, 8.

From stability considerations, many numerical schemes have a restriction on the

size of time step that may be used to integrate a system of equations. The finer the

mesh, the smaller the allowable time step. Consequently, the AMR algorithm refines
in time as well as space. More but smaller time step3 are taken on fine grids than

on coarse grids in a fashion which ensures that the rate at which waves move relative

to the mesh (the Courant number) is comparable for all grid levels. This avoids the

undesirable situation where coarse grids are integrated at very small Couidult numbers

given the time step set by the finest grid's stability constraints.

plan view

perspective view

Figure 8: The AMR algorithm employs a hierarchical grid system.
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The field oolution on each grid is retained even in regions of grid overlap and so all

grid levels in the hierarchy coexist. The order of integration is always from coarse to

fine since it is necessary to interpolate a coarse grid solution in both time and space

to provide boundary conditions for its overlying fine grid. The various integrations at

the different grid levels are recursively interleaved to minimize the span over which

any temporal interpolation need take place. Periodically, for consistency purposes, it

is necessary to project a fine grid solution on to its underlying coarse grid. Figure 9

shows the sequence of integration steps and back projections for a three level grid

{Go, G1, G2} with refinement ratios of 2 and 4.

INTEGRATION TIME STEP PROJECTION ADAPTION
Go At

Gi At/2

4xG2  4 xLAt/8

G2 • G,

G2

G, At/2

4xG 2  4×x t/8
G2 -*Gi

G, --+ Go

G2
Gi

Figure 9: Grid operations are recursively interleaved (to be read from top to bottom).

The integration of an individual grid is extremely simple in concept. Each mnish is

surrounded by borders of dummy cells. Prior to integrating a grid, the dummy cells

for every mesh patch in the grid are primed with data which is consistent with the

various boundary conditions that have to be met. Each mesh patch is then integrated

independently by an application dependent, black-box integrator that never actually

sees a mesh boundary. Thus, in principle, any cell-centred scheme developed for a

single topologically rectangular mesh can form the basis for the integration process.

In general it is necessary to adapt the computational grid to the changes in the

evolving flow solution and so the grid structure is dynamic in nature. Monitor func-

tions based on the local solution are used to determine automatically where refinement

needs to take place so as to resolve small scale phenomena[20]. For example, Figure 10

shows several snapshots taken from the simulation of a shock wave diffracting around
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a corner. Each snapshot shows the outlines of the mesh patches which go to make

the finest grid. This grid clearly conforms to the main features of the flow, namely

the diffracted shock front and the vortex located at the apex of the corner. Although

the changes in grid structure shown here are dramatic, many adaptions have taken
place between each frame. A large number of small grid movements occurs because

the adaption process dovetails with the integrations process, see Figure 9. Note that

the adaption always proceeds from fine to coarse so as to ensure that there is never

a drop of more than one grid level at the edge of a fine grid to the underlying coarse

grid. A grid adaption essentially produces a new set of mesh patches which must

be primed with data from the old set of patches before the integration process can

proceed. Where a new patch partially overlaps an old patch of the same grid level,

for the region of cverlap, data may be simply shovelled from the old patch to the

new patch. In regions of no such overlap, the required field solution is found by

interpolation from the underlying coarse grid solution.

(1) (2)

(3) (4)

Figure 10: The AMR algorithm employs a dynamic grid system.

In a typical application the finest grid will contain several hundred mesh patches.

Thus, the mesh patch is a sufficiently fine unit of data for efficient parallelism. The

parallel AMR algorithm[26] is implemented using a Single Program Multiple Data



- 13-

(SPMD) model. Each processing node executes the basic serial algorithm[201 in iso-

laticn from all other nodes, except that at a few key points messages are sent between

the nodes to supply information that an individual node deems to be missing, that is

off-processor. For example, during the integration of a grid, the only point at which a

processor needs to know about other processors is during the priming of the dummy

cells. Whereas in a serial computation all data fetches are from memory, for a parallel

computation some are from memory and some necessitate receiving a message from

another processor. Each time the grid adapts, the algorithm generates a schedule of

tasks that have to be performed so as to prime correctly the dummy cells of a given

grid. If running in pacallel, this schedule is parsed to produce a schedule of those

tasks that necessitate off-processor fetches. At which point, individual processors

can exchange subsets of their fetch schedules, as appropriate, so that every node car.

construct a schedule of messages that it must send out at some later date. Thus,

the priming process is carried out in two phases. First, all the local data fetches are

performed as for the serial case. Second, each node sends out the data that has been

requested of it. The node then waits for those data items it has requested. For each

incoming message it can readily determine from its own schedules what to do with

the off-processor data, and so the order in which messages arrive is unimportant. The

adaption process and the back projection of the field solution between grid levels also

necessitate sizeable amounts of communication, these are handled in a similar fashion

to the priming of the dummy cells.

The problem of load balancing the AMR algorithm rests on determining the best

distribution of the new patches amongst the processing nodes before the new field so-

lution is interpolated from the old field solution. Currently, this is done using heur;stic

procedures[27] which bear strong similarities to classical 'Bin Packing' algorithms[28]

with the added complication that they must account for the communication costs of

data transfer between nodes.

The main advantage of the AMR algorithm is that the processing within a patch

can proceed largely without knowledge of the method of parallelization or knowledge

of the treatment of mesh boundaries, and so it is extremely simple to change the

basic method of flow integration. Thus the present Cartesian boundary scheme can

utilize the algorithm more or less directly. Except that there is a small amount of

additional book keeping to account for the fact that some groups of combination

cells may straddle more than one processor. But this complication is not great and

introduces very little data traffic.
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4 RESULTS

All the simulations reported in this section were done by integrating the Euler eqa..a-

tions using the present Cartesian boundary scheme in conjunction with the finite-

volume method described in [17]. Each computation was performed in parallel on a

cluster of five Silicon Graphics workstations (Indigo 2, MIPS 4400).

In order to demonstrate that our scheme can cope with arbitrary two-dimensional

geometries, we have computed the interaction of a planar shock wave, Ms = 1.5

and -y = 1.4, with the log,) 'AMR @ ECCOMAS 94'. Although this example is

unashamedly gratuitous it serves to demonstrate the capabilities of the scheme. The

whole exercise from conception to completion took just seven hours and involved no

special intervention on our part. Figure II shows a schlieren-type snapshot from this

simulation. The background Cartesian mesh was nominally equivalent to a uniform

mesh of 1920 by 600 cells and so the flow field is well resolved and many fundamental

shock interaction phenomena are clearly visible.

Whilst spectacular, given the impossibility of verifying the results, this simuli.tion

is rather meaningless. Therefore, on a more serious note, we present two schlieren-

type images from a simulation of the focusing of a weak shock wave, Ms - 1.2

and y = 1.4, by a parabolic reflector, see Figure 12. These images compare well
with experiment (see, Figures 3 (a) and 3 (f) of [29]) and so the integrity of the

simulation is beyond doubt. In this case, although the geometry is relatively simple,

a topologically uniform body-fitted grid would be severely distorted. Since such

distortions could have an adverse affect on the quality of the simulation, it follows

that a Carttsian boundary scheme need not be reserved for geometrically complex

problems.

To investigate the potential vagaries of the blunting procedure which is applied to

sharp cormers, we have simulated the diffraction over a knife edge of a Ms = 1.5 planar

shocK wave. This flow gives rise to a vortex sheet which emanates from the tip of the

knife edge[30]. Figure 13 shows a sequence of schlieren-type images for various stages

in the development of the vortex sheet. Frames 1-5 were taken from a computation

for which the knife edge was blunted. The computation was then repeated with the

knife edge positioned so that it was not blunted, see Figure 14. Qualitatively, the

differences in the two solutions are minor; c.f Frame 5 (with blunting) and Frame 6

(without blunting).

Generally speaking, a fluid dynamicist would be more concerned about the validity

of simulating a viscous phenomena inviscidly. Consequently, although the solution is
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Figure 11: The algorithm can copc with arbitrary geometries: flow around 'AMR@
ECCOMAS 94'!
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(1) (2)

(5) (ci)

Figure 13: Evolution of a vortex sheet due to a shock wave diff-racting over a knife
edge.
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Figure 14: The tip of the knife edge with and without blunting.

sound, one 3hould be careful in att,,aching too much credence to the minutiae at late

times in the simulation since these are controlled by vestigial numerical diffusion and

will thus vary from scheme to stcheme. Indeed, for the vortex produced by a Ms = 1.5

shock wave diffracting around a 90' corner, the variations in structure with changes

in numerical scheme are far greater than the changes here due to blunting[31].

5 CONCLUSIONS

While a Cartesian boundary-cum-mesh refinement approach can undoubtedly pro-

duce spectacular results, it must be realized that there is no concise recipe for suc-

cess. Consequently, we feel that the high development costs will continue to act as

a deterrent and so limit the popularity of this approach. Nevertheless, if maximum

resolution is sought, the advantages of the present scheme far outweigh its develop-

ment costs. Moreover, since the basic machinery is not tied to any one integration
scheme and it forms a reliable framework that can be readily exploited by a variety

of applications, the effective costs are to some extent diminished. As they are every

time the method is used, simply because there are no longer any grid generation costs

to worry about.

It is also worth noting that a Cartesian boundary scheme becomes more efficient as

the resolution of the computation increases, because the cut-cells occupy an increas-

ingly smaller volume in space and therefore introduce less of an overhead. Moreover,

a Cartesian scheme does not distort the mesh in gensitive parts of the flow field, as

sometimes happens with body-fitted grids to the detriment of the computed solution.

Finally, despite its logical complexity we have demonstrated that the present

scheme can ex.ploit parallel computing engines efficiently and so it is not likely to

be overtaken by advances in computer architectures which would make it redundant.

u n I
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